
DOCUMENT RUMP

ED 100 371 It 001 470

AUTHOR Claybrook, Billy G.
TITLE An Artificial Intelligence Approach to the Symbolic

Factorization of Multivariable Polynomials. Technical
Report Yo. CS74019-R.

INSTITUTION Virginia Polytechnic Inst. and State Univ.,
Blacksburg. Dept. of Computer Science.

PUB DATE Apr 74
NOTE 58p.

EDRS PRICE MF-$0.75 HC-$3.15 PLUS POSTAGE
DESCRIPTORS *Algorithms; *Artificial Intelligence; *Computer

Programs; Computers; Learning Theories; Mathematical
Applications; *Mathematical Models; Mathematics;
Models

IDENTIFIERS Berlekamp; *Factorization; Heuristics; POLYFACT;
Nang

ABSTRACT
A new heuristic factorization scheme uses learning to

improve the efficiency of determining the symbolic factorization of
multivariable polynomials with interger coefficients and an arbitrary
number of variables and terms. The factorization scheme sakes
extensive use of artificial intelligence techniques (e.g.,
model-building, learning, and automatic classification) in an attempt
to reduce the amount of searching for the irreducible factors of the
rolynoaial. The approach taken to polynomial factorization is quite
different from previous attempts because: (1) it is distinct from
numerical techniques; (2) possibilities for terms in a factor are
generated from the terms in the polynomial; and (3) a
reclassification technique: is used to allow the application of
different sets of heuristics to a polynomial during factorization
attempts on it. Data presented show the importance of learning to the
efficiency of operation of the scheme. Factorization times of
polynomials factored by both the scheme described in this paper and
Wang's implementation of Berlekampis algorithm are given and
compared, and an analysis of avariance experiment provides an
indication of the significant sources of variation influencing the
factorization time. (kuthor /T)GC)



Technical Report CS74019-R

AN ARTIFICIAL INTELLIGENCE
APPROACH TO TFE SYMBOLIC

FACTORIZATION OF MULTIVARIABLE
POLYNOMIALS

Billy G. Claybrook

U S DEPARTMENT OF HEALTH
EDUCATION WELFARE
NATIONAL INSTiTUTE OF

EDUCATION
THIS DOCUMENT HAS SEEN REPRO
OuCED EXAM. AS RECEIvf 0 FROM
104F PFRSON OR ORGANizATIDN ORIGIN
ATtING It POINTS VIEW JR OPINIONS
stA TF (I DO NOT NF(FSSARIIY 10i PRI
sf NY 01 1.c in, NA t ONAL IN',!i itI Of
f Our AT ON P05, T!ON ON Poi y

April 1974

Department of Computer Science, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia
24061



ABSTRACT

A new heuristic factorization scheme that uses learning to improve

the efficiency of determining the symbolic factorization of multivariable

polynomials with integer coefficients and an arbitrary number of variables

and terms is described. The factorization scheme makes extensive use of

Artificial Intelligence techniques, e.g. model-building, learning, and

automatic classification in an attempt to reduce the amount of searching

for the irreducible factors of a polynomial. The approach taken to

polynomial factorization is quite different from previous attempts because:

(1) it is distinct from numerial techniques, (2) possibilities for terms

in a factor are generated from the terms in the polynomial, and (3) a

reclassification technique is used to allow the application of different

sets of heuristics to a polynomial during factorization attempts on it.

Tables are presented that demonstrate the importance of learning to

the efficiency of operation of the scheme. Factorization times of

polynomials factored by both the scheme described in this paper and Wang's

implementation of Berlekamp's algorithm are given and compared and an

analysis of variance experiment provides an indication of the significant

sources of variation influtIncing the factorization time..

4



I. INTRODUCTION

Before 1967, attempts to determine the symbolic factorization of multi-

variable polynomials with an arbitrary number of terms and variables using

both heuristic methods and algebraic methods proved to be largely unsuccessful.

These attempts were able to factor only simple polynomials and were time con-

suming. In 1967 Berlekamp [3] published a new algebraic algorithm for factoring

univariate polynomials with integer coefficients. Various modifications and

extensions of Berlekamp's algorithm [19], [24], [26] have led to other algorithms

for factoring univariate and multivariate polynomials. In particular, Wang's

algorithm [24] appears ro be one of the most efficient for both univariate and

multivariate polynomials. Wang's algorithm factors many multivariate polynomials

efficiently; however, there are some types of polynomials with which it has problems.

This paper describes a new heuristic factorization scheme that uses learning

and other heuristic programming techniques to improve the efficiency of determining

the symbolic factorization of multivariable polynomials with integer coefficients

and an arbitrary number of variables and terms. This factorization scheme is

applied only to multivariable polynomials. We do not try univariate ones (except

for a few special cases) since Berlekamp's algorithm [2] is a clear winner in

most instances. This factorization scheme makes extensive use of Artificial

Intelligence techniques, e.g. model-building [18], learning, and automatic

classification in an attempt to reduce the amount of searching for all of the

irreducible factors of a polynomial. The reader should keep in mind that we are

not claiming that this scheme is a general factorization algorithm for there are

a few instances where factorization of a reducible polynomial could fail. However,

it does succeed in most instances. Polynomial factorization using heuristic

techniques is basically a combinatorial problem. Our approach to factorization



2

Is distinct from numerical techniques, e.g. Kronecker's algorithm [12], and

advanced algebraic techniques, e.g. Berlekamp's algorithm [2j.

The primary purposes of this paper are:

1. to provide an overview of the implementation of the factorization

scheme in the learning program POLYFACT [5j,

2. to present the fundamental details of the heuristic factorization

scheme and discuss its usefulness to polynomial factorization,

3. to describe Berlekamp's algorithm and indicate where it works well

and where it has problems,

4. to show that an Artificial Intelligence approach to factoring
multivariable polynomials is feasible for many multivariable

polynomials, and

5. to demonstrate that learning can improve the efficiency 0 operation

in the solution of a complex problem such as polynomial 4',ctorization.

The reader can interpret this paper jointly as one that describes a heuristic

factorization scheme, and as one that demonstrates the use of learning and

other Artificial intelligence techniques in solving complex problems.

Section II presents an overview of POLYFACT and the implementation of

this factorization scheme. Section III provides related work in polynomial

factorization and learning programs. Section IV gives a detailed description

of the factorization scheme, and Section V presents results and possible

modifications.

II. OVERVIEW OF POLYFACT

This section provides a brief description of the implementation of this

factorization scheme in the learning program POLYFACT and gives an overview of

the scheme itself (a detailed description appears in Section IV). The primary

objectives in the development of POLYFACT were:

1. to design a multivariable polynomial factoring program that can be
used as a vehicle in a complex-learning environment,



3

2. to develop a representation for heuristics that allows for dynamic
creation and modification during program execution,

3. to show that learning through the dynamic modification of heuristics
can be used successfully in a complex environment to increase the
efficiency of the program,

4. co demonstrate that a classification scheme can be used to allow the
program to extend itself to newly classified polynomials, and

5. to show that a classification scheme can be used as a mechansim for
implementing localized learning.

Description of POLYFACT

POLYFACT is written in FORTRAN V and implemented on a UNIVAC 1108. POLYFACT

consists of over 230 subroutines and functions. Fig. 1 gives a flow diagram

describing the operation of POLYFACT. Polynomials are input to POLYFACT in

FORTRAN notation in either factored form (this form is allowed for convenience)

or in expanded form. Polynomials input in factored form are expanded by taking

the product of the. factors (the factors may or may not be irreducible factors).

Prior to a factorization attempt each polynomial is completely simplified

(i.e. has all like terms combined) when the polynomial is placed into canonical

form. In this paper a simplified polynomial is one that has had like terms

combined. We consider a polynomial to be unsimplifiable if it has no terms that

can be combined during polynomial simplication (there are many reducible polyncmials

whose factors when multiplied out do not have any like terms that can be combined).

We make the distinction between simplified and unsimplifiable polynomials to avoid

any misinterpretations by the reader that could occur in succeeding sections of

this paper.

Representation of Polynomials

POLYFACT operates in a list processor environment with each cell consisting

of two consecutive FORTRAN words (each word on the 1108 consists of 36 bits). The

polynomials in POLYFACT are represented internally as a matrix of coefficients



START

INPUT

POLYNOMIAL

V

PLACE
POLYNOMIAL

IN CANONICAL
FORM

REMOVE

MONOMIAL
FACTOR

CALL

MODEL-
BUILDER

BEST COPY AVAILABLE

DETERMINE
FEATURES
VECTOR

CALL
GARBAGE

COLLECTOR

TRAVERSE
CLASSI-
FICATION
TREE

YE
ORE

FACTORS TO
EDUCE

NO

CALL
FACTOR

YES NORE
INPUT

NO

ANLYZE
FACTORIZATIO1

ATTEMPT

POLYNOMIAL
RREDUCIBL RHSERYio

NO

Fig. 1. Macro flow diagnim of POLYFACT

4



5

BEST COPY AVAILABLE

and exponents. The matrix is represented by a list structure with all elements

in a row linked together as a right-linked list and all elements in a column

linked together as left-linked list. Each column vector in the canonical form

corresponds to a term in the polynomial. The list representation of polynomials

allows POLYFACT to accept polynomials with an arbitrary number of variables

and terms. The internal representation of the U -nomial 3x
2
y+5xz-9yz 2

is

given in Fig. 2.

"MEI Ilia -=11111111111-
1111111111111110

71111 -NM

Fig. 2. Canonical form of 3x2y+5xz-9yz2

Row one in Fig. 2 contains the coefficients of the terms in the polynomial;

and rows two through four hold the exponents of variables x, y, and z,

respectively. The zeros in the left and right links of some of the cells

are list terminator indicators. We select this canonical form for its

simplicity of representation, ease of locating specific terms in the poly-



6

nomial, and provision of the requirements of the model-builder.

Operation of POLYFACT

POLYFACT operates either in a training mode or learning mode.

POLYFACT also learns in both modes. While in the training mode,

the values of M and N and a simplified or unsimplifiable polynomial

indicator are input. The user can train POLYFACT for as long as he deems

necessary and then change the operation mode to the learning mode. POLYFACT

can begin operation in the learning mode instead of training mode, but

the training mode speeds up the rate of learning because less time is re-

quired to factor each polynomial. When POLYFACT is in the learning mode,

no helpful information is given to it. The results of the learning process

can be saved, and the training cycle omitted in subsequent uses of POLYFACT.

Overview of the Factorization Scheme

The factorization scheme implemented in POLYFACT relies on the fact
C

that a reducible polynomial can be written as the product of two factors,

one with M-terms and one with N- terms. 1)uring a factorization attempt the

M-term factor is sought, and the N-term factor is determined by division of

the M-term factor into the subject polynomial. Then both factors are saved

and later reduced. POLYFACT attempt: to minimize the amount of searching

for the M-term factor by: (1) building a model fcr each polynomial, (2) using

learning for term selection to initiate tne factorization process, and (3)

using learning to select term possibilities in the M-term :.:actor.



Classification of Polynomials

7

POLYFACT classifies pOitomials according to certain features that

each exhibits (the features are given in Section IV). Through classifi-

cation the capability exists for applying specific heuristics to a desig-

nated polynomial. Two types of features are used in classification:

surface features and hidden features. Surface features are those features

that can be determined by visible examination of the subject polynomial.

Hidden features are those features not immediately visible to either a

human or a pattern recognition program. The hidden features are detected

during a factorization attempt, i.e. during the factorization of a poly-

nomial characteristics are discovered that are not obvious from the initial

examination. The detection of hidden features during a factorization attempt

usually results in a reclassification of the polynomial unless the current

factorization attempt is successful. The reclassification process is a

powerful one since it provides the capability to automatically apply different

sets of heuristics to a single polynomial during its factorization. The

classification process is closely associated with the ability to dynamically

create and modify heuristics [6).

The features (both surface and hidden) that a polynomial exhibits determine

the heuristics used during a factorization attempt. In POLYFACT, the classi-

fication scheme is implemented as a binary classification tree. The classifi-

cation tree is automatically constructed during program execution. The binary

features vector of the polynomial is the address of a terminal node in the

tree. This terminal node contains a pointer to the set of heuristics for this

particularly classified polynomial.



8

The Model-Builder

A model [18] is created for each polynomial. The Liodel is a means

br reducing the amount of searching for a factor in a polynomial. There

is no learning associated with the model-builder in POLYFACT. The model-

builder tries to determine the values of M and N and the valid possibilities

for terms in the M-term factor (the word "possibility" is used to denote

terms that are candidates for terms in the M-term factor). If the factor-

ization attempt is not successful with the current values of M and N then

either the polynomial is reclassified and the process repeated with M and N

unchanged; or the model-builder determines new values for M and N, and the

process is repeated. A complete description of the model-builder is pre-

sented in Section IV.

The initial implementation of this factorization scheme in POLYFACT

requires the explicit determination of the correct values of M and N before

the factorization of a polynomial can be successful. This requirement is

necessary because: (1) POLYFACT uses a heuristic division algorithm [5] that

requires the correct values of M and N for a successful division, and (2) the

determination of the M x N possibility list (discussed in Section IV) re-

quires these two quantities. In Section V we provide another more operable

method for determining the value of N. This new method frees the model-

builder from the unenviable task of trying to determine the value of N prior

to a factorization attempt. This modification also allows the replacement

of the heuristic division algorithm by a conventional more efficient one.



9

Learning in POLYFACT

The learning schemes depend very heavily on the capability of POLYFACT

to modify the heuristics dynamically. The importance of a representation

for heuristics that allows for dynamic modification is discussed by Clay-

brook and Nance [6]. The heuristics in POLYFACT are represented in the

first-order predicate calculus language U6] and are interpreted during

program execution. Interpretation of the heuristics in POLYFACT is necessary

since they are modified dynamically during program execution.

We have stated that the amount of searching for the M-term factor is

reduced by using learning to aid in the selection of a term to initiate the

factorization process and to select term possibilities for the M-term factor.

The primary objective in term selection is to choose a term that leads to a

small search space. The heuristic associated with directing learning in

term selection utilizes the presumption that the term exhibiting the fewest

number of possibilities leads to the minimum search space.

The learning associated with term selection is as follows. After a

successful factorization attempt is complete, the number of possibilities

in each term of the polynomial is determined. The features of the term(s)

with minimum number of possibilities have their frequency count(s) increased

(these features are given in Section IV). Then heuristics are constructed

dynamically (and ordered) to reflect the importance of the features in

selecting a term T to initiate the factorization process, i.e. if a feature

has the highest frequency count, then all terms that do not have this feature

are removed from consideration for T. The order of the heuristics for term

selection can vary during program execution since POLYFACT adapts to the

sequence of input polynomials. Learning associated with term selection can



in

also occur after an unsuccessful factorization attempt since the original

terms in the polynomial are not changed regardless of a successful or un-

successful factorization attempt. In fact, the learning associated with

term selection can be primed prior to any attempts at factorization.

An example of a term selection heuristic in POLYFACT is the following:

H1.1 (E T IN So) ((N Hl(G11(T),MINDEG) A N Hl(G21(T),MINVAR) C FIX123)) $.

This heuristic with name H1.1 resets the use flag (the use flag indicates

membership in a set) of each term T in set So with degree (degree of T is

the value of the function G11(T)) exceeding MINDEG and with number of

variables (value of function G21(T)) exceeding MINVAR. The value of MINDEG

is the degree of the minimum degreed term in So, and the value of MINVAR is

the number of variables in the term with the minimum number of variables in

So. H1 is a predicate, and FIX123 is a consequent that is executed if

the antecedent

N Hl(G11(T),MINDEG) A N H1(G21(T), MINVAR)

is satisfied. N, A, and C are the negation, conjunction, and conditional

symbols, respectively.

The possibilities that can be selected as terms in the M-term factor

are ranked according to their apparent merit in determining the correct

M --term factor, and during a factorization attempt the highest ranked usable

possibilities are selected. A usable possibility is one whose use flag is

set. The features (given in Section IV) for possibility selection determine

the rank of each possibility. After a polynomial has been factored, each

of the terms in the M-term factor is examined to determine its set of

characteristic features. A binary vector is created with nonzero entries

indicating the features present. Then a heuristic is constructed in first-



11

order predicate calculus notation using as predicates those features

characterizing the M-term factor.

To facilitate the construction of this set of heuristics, a matrix

is maintained providing a history of the features of ter.s that have

appeared in factors of previous polynomials. After the vector of features

has been created for a term, it is compared with each row in the matrix to

determine if the vector is already present. If so, the frequency count for

the matching row is incremented. If the vector is not in the matrix, it

is added and the corresponding heuristic is created.

When these heuristics are used to rank the possibilities in sets F0

and F1 (F0 and F1 are sets of possibilities described in Section IV), a bi-

nary vector is created with nonzero entries appearing in the vector positions

corresponding to the predicates in the satisfied antecedent. When an ante-

cedent is satisfied, the vector (created by the satisfied antecedent) is

compared to each row in the history matrix. If the vector is in the matrix,

the rank of the possibility is the frequency count, kept as an augmented

column entry in the matched row; otherwise, the rank is zero. The learning

associated with possibility selection can also be primed prior to any

factorization attempts by inputting polynomials in factored form and analyzing

the terms in the factors or simply by factoring polynomials in the training mode.

The possibility selection heuristics are maintained in complete predi-

cate calculus notation and also in the encoded matrix form. The matrix form

is convenient for determining the need for modifications to the heuristics.

The term selection heuristics are kept in an encoded form for all classes of

polynomials and then expanded prior to execution into first-order predicate

calculus notation. The learning associated with term selection is within



classes of polynomials' and learning associated with possibility selection

carries over from polynomial to polynomial regardless of its classification.

The type of learning described above is generalized learning [18j, [20],

(21]. In Section V we show that learning is of considerable importance in

improving the efficiency of operation of this factorization scheme. The

composite of learning and polynomial classification provides a powerful

mechanism for: (1) implementing localized learning for each class of poly-

nomials, (2) the automatic extension of heuristics to previously unclassified

polynomials, and (3) the dynamic construction and modification of heuristics.

Analysis of a Factorization Attempt

Regardless of failure or success, the results of each factorization

attempt are analyzed. During this analysis, POLYFACT determines if the

heuristics for term and possibility selection require modification and

whether or not the polynomial warrants reclassification in the case of

failure. If the user desires, learning associated with term and pos-

sibility selection can be ended after an appropriate period of time. Then

heuristics are not modified after a factorization attempt until the learn-

ing indicator is reset.

Nature of the Heuristics in POLYFACT

The creation and modification of all the heuristics in predicate cal-

culus notation are directed by the learning programs in POLYFACT. The set

of heuristics determined by the classification scheme for a particular poly-

nomial guides the actual factorization attempt. Each set of heuristics

16

12



13

consists of several subsets, with each subset having a s"ecific function

to perform. These subsets are responsible for:

(1) selecting a term T to initiate a factorization attempt,

(2) creating the set F0 of all possibilities in the term T,

(3) ranking the possibilities in the set F0 according to their

probable merit in creating the M-term factor,

(4) selecting a possibility P from F0 , where P is the first term

in the M-term factor,

(5) creating the set F1 of possibilities used to complete the

M-term factor,

(6) ranking the possibilities in F1 , and

(7) creating the remainder of the M- -term factor (terms 2 through M)

by the selection of terms from F1.

III. RELATED WORK

Unlike POLYFACT, most factorization algorithms [2], [12], [19] and

symbolic and algebraic manipulation systems [8], [9], [14], [15] have been

implemented without any consideration for learning. We try to relate, in

a succint manner, some of the previous research in polynomial factorization

and learning schemes rn the research described in this paper.

Factorization Algorithms

The classical algorithm for polynomial factorization is Kronecker's algorithm

[12]. This algorithm has been implemented independently by Monove, Bloom, and

Engleman [14] in their MATHLAB system, and by Johnson [11]. Jordan, Kain, and

Clapp [12] describe a method for finding the symbolic factorization of multi-

variable polynomials by using a generalized version of Kronecker's algorithm.

Later references to this work do not establish the implementation of the method.

4



14

Musser [19] has described algorithms for factoring polynomials with arbitrarily

large integer coefficients. His algorithms are based on the use of modulo p

factorizations and constructions based on Hensel's Lemma [23]. He has

implemented algorithms for the univariate case and is currently implementing

the algorithms for multivariable polynomials. Wang [24] has an efficient imple-

mentation of a version of Berlekamp's algorithm [2] which factors multivariable

polynomials over the integers. His algorithm begins by making substitutions

for all but one of the variables, producing a polynomial in just one variable.

This univariate polynomial is then factored using Berlekamp's algorithm. After

this factorization is done, the multivariable factors are recovered. Berlekamp's

factorization algorithm has had such an impact on the factorization of

polynomials that we outline it below.

Berlekamp's Algorithm

Let f(x) be a univariate squarefree primitive polynomial. All arithmetic

is done modulo q (q a prime). We want to determine r irreducible polynomials

pi(x), i=1, 2, r such that

(1) f(x) pi(x) p2(x)...pr(x).

If (1) holds and (si, s2, ..., sr) is any r-tuple of integers modulo q then by

the Chinese remainder theorem, there is a unique polynomial v(x), deg v(x) <

deg f(x), such that

(2) v(x) E s mod (pi(x)) i . 1, 2

The Chinese remainder theorem applies since the pi(x) are irreducible and therefore

relatively prime.



BEST COPY AMIABLE

15

Information about the pi(x) can be obtained from solutions of (2). Since

(3) sq E s (mod pi(x))
i

We find that

(4) v(x)q E v(x) mod (pi(x)) i 1, 2, r.

Using (1) and (4) we get

(5) v(x)q E v(x) mod (f(x)).

Since

(6) xcl-x E (x-0) (x-1) (x-(q-1)) mod q

by (3), it follows that

(7) v(x)q-v(x) (v(x)-0) (v(x)-1) (v(x)-(q-1)).

If v(x) satisfies (5) then every irreducible factor of f(x) must divide one

of the q relatively prime factors of the right-hand side of (7). Since deg

f(x) deg v(x), we have gcd(f(x), v(x)-s) 0 1 or f(x), i.e. it is a nontrivial

factor of f(x). In fact

(8) f(x) II gcd(f(x), v(x)-s).
0 < s < q

This shows that given any v(x) satisfying (5), we can determine a nontrivial

factorization of f(x) using gcd's. Since fast algorithms for finding gcd's exist

[4], [8], the factorization of f(x) is fast when the v(x) is determined.

There are qr solutions of (5), and any solution of (5) must satisfy (3).

Knuth [ii provides a method for finding solutions to (5). We outline briefly

the steps for finding solutions to (5). Let deg f(x)= n; we can construct the

n x n matrix

(9)

where xqk E q
k,n-1

x
n-1

+ + qk1
x + q

k0 mod (fix)). Then v(x)

q090 q0,1

qn-1,0 qn-1,1.1 5n-1, n-1

wr )



16

vn-1 I
n-1 + vix + v0 is a solution to (5) if and only if (v0, vl,

vn-1)
- (v0, vl, vn_i) (Knuth (il gives an algorithm for constructing

Q). After Q has been constructed triangulariae Q I, where I is the n x n

identity matrix, finding its.rank n-r and r linearly independent vectors v
[1]

,

v[r]v
[2]

v such that v (Q - I) = (0, 0, ..., 0) for i = 1, 2, ..., r.

At this point, r is the number of irreducible factors of f(x).

The solutions to (5) are the qr polynomials corresponding to the vectors

tiv[1] + + t
r
v[r] for all choices of integers 0 < tl, tr < q. Next

[2]
calculate gcd (f(x), v

[2]
(x) -8) for 0 < s < q, where v (x) is the polynomial

represented by vector v
[2]

(v
[1]

represents the trivial solution to (5)). Then

by (8) we have a non-trivial factorization of f(x). If v
[2]

(x) does not succeed in

splitting f(x) into r factors, further factors can be obtained by calculating

gcd (v
[k]

(x) -s, w(x)) for 0 < s < q and all factors w(x) of f(x) found so far,

for k = 3, 4, ... until r factors are obtained.

The algorithm outlined above works quite well when q is small; however,

if q is large then (8) becomes a problem area because it becomes impractical

to compute the gcd of f(x) and v(x) -s for each s c GF(q). Berlekamp's algorithm

also suffers a loss in efficiency when the degree of the polynomial is large.

Berlekamps [2] discusses a method for dealing with (8) when q is large.

This method was originally proposed by Zassenhaus [26]. The Zassenhaus algorithm

transforms the problem of factoring f(x) over GF(qm) into the problem of finding

the roots of a polynomial over GF(q). We outline Zassenhaus' approach for

factoring polynomials f(x) over Z (rational integers) below.



17

Zassenhaus Algorithm

In general it is more difficult to factor a monic polynomial f(x) of degree

n over Z. If C is the maximal absolute value attained by the coefficients

m m-1
of f(x), the coefficients of a factor g(x) x+ b

1
x + + b

m
satisfy tho

inequalities lbj1 < (j ) (C + 1)j 1, 2, ..., m) [27]. If these bounds are not

too large for m < , the factorization of f(x) over Z can be accomplished

by picking a prime q which is greater than the maximal bound and by then

factoring f(x) over GF(q). Zassenhaus used Hensel's Lemma [23] to develop an

efficient means for factoring polynomial f(x) over Z. He chosen any prim, q

not dividing the discriminate [13] d(f) and decomposes f(x) into two moni,: factor:,

modulo qZ[x]. f(x) is irreducible over Z if it has no proper decomposition

modulo qZ[x]. Othtrwise, the decomposition modulo qZ[x] is raised to a modulus

which involves a higher power of q, proceeding from

f(x) E f
1
(x) f

2
(x) mod (e-Z[x]) to

f(x) E f'1 (x) f12 (x) mod (q`
rgx]).

,

Eventually, it will be possible for a suitable power of q to decide whelutIr or

not the decomposition of f(x) modulo q
t
Z[x] gives rise to a decomposizi6ii of

f(x) over Z. The power of q in the modulus will quickly approach the above

mentioned coefficient bounds. This procedure has to be carried on recursively

for each of the two factors of f(x) over Z that results from the first. stcp.

Finally f(x) is decomposed into a product of irreducible factors over 2.. The

weakness of this approach occurs when f(x) has many more factors modulo (17.[xl

for the prime q chosen than it has over Z itself.

The Berlekamp-Hensel algorithm (e.g. Wang's algorithm) does particularly

poorly in one case: the "bad zero" case. This case occurs when a suhhtitaii,:.



18

of zero for all but one of the variables causes the leading coefficient to go

to zero. The heuristic algorithm described in this paper has few problems with

this type of polynomial. More will be said about this in Section V.

Cost of Factorization in Berlekamp-type Algorithms

Musser [19] has shown that Berlekamp's 1967 algorithm [3] is dominated by

n
3
L(q)

2
+ n

2
L(q)

3
+ n

2
rqL(q)

2
. The L operator is defined as the number of

digits in q (L(q) can also be interpreted as log (q)). In the multivariate

case it is Hensel's Lemma [23] that dominates in computing costs, not Berlekamp's

algorithm. Musser has shown that the time for application of Hensel's algorithm,

3
to univariate polynomials, is dominated by n2L(m) + nL(m)

2
L(c), where

n = deg f(x), m > 2B (B is a bound on the coefficients of the divisors of f(x)),

and c = If(x)11 (I f(x)11 is the sum of the moduli of the numerical coefficients

of f(x)). Comments on the cost of the factorization scheme described in this

paper appear in Section V.

Le4rning Programs

In many cases learning has been studied in a simple environment [17],

[20], [22] so that more attention can be paid to learning schemes than to

the problem environment. We limit the discussion of learning here to a

few generalized learning [21] schemes. Generalized learning has been used

more frequently by researchers in Artificial Intelligence than any other

learning technique. The reason for their frequent use seems to be twofold:

(1) humans tend to use generalized learning in their learning habits, and (2)

other learning schemes, e.g. rote learning [21] and concept learning [10] are

applicable only in certain itiatances.



19

Generalized learning has usually appeared in the form of modifying weights

in an evaluation function, e.g. in Samuel's checker program [21), Michie and

Ross's Graph Traverser [17), and Slagle and Farrell's MULTIPLE program [22).

Waterman [251 has presented some generalized learning techniques in his

poker playing program. His program generalizes by modifying heuristics,

represented in production form, to catch state vectors that represent

game situations.

This discussion of learning programs is brief; the reason being that

very little use has been made of learning in solving practical problems.

We hope this paper will convince the reader of the importance of learning

as a problem solving tool.

IV. DETAILS OF THE FACTORIZATION SCHEME

In Section II the reader was introduced to the basic ideas behind this

factorization scheme. In this section a detailed description of the scheme

is given. Before describing the factorization scheme, we point out that not

only is learning itself used to reduce the amount of searching for the factors

of a polynomial, but other heuristics are employed as well, e.g. creation of

the M x N possibility list and its use in creating the set F0, the g.c.d.

constraint, etc. The reader should be able to pick out these heuristics in

this section.

Aesponsibilities of the Model-Builder

The model-builder is the most important part of this factorization scheme.

In addition to determining the values of M and N (M<N), the model-builder also:



20

(1) creates the M x N possibility list (this list contains all the possibilities

that can be tried as terms in the M-term factors), ''?) decides if the

polynomial is simplified, and (3) determines whether or not the polynomial

is irreducible.

If a polynomial can be factored into an M x N factorization, then the

terms in the M-term factor must be in the M x N possibility list created by

the model-builder. If a polynomial is reducible and has a term in the

smallest factor (the M-term factor) that is not in the possibility list,

then the polynomial cannot be factored into an M x N factorization, i.e.

the values of M and/or N are incorrect.

Calculation of M and N

The values M and N are the two most important quantities determined by

the model-builder. They are the basis for determining the possibility list

mentioned above. Few features of a polynomial give any insight as to their

values. The approach to determining M and N in the initial implementation of

POLYFACT is the following (another more operable approach is described in

Section V):

1. Try to detect whether or not the polynomial is a simplified poly-
nomial.

2. If it is not possible to determine that the polynomial is a simplified
polynomial then assume that it is an unsimplifiable polynomial.

3. Using NTERMS, the number of terms in the polynomial,dhtermine all
possible combinations of M and N such-that M<N and N1TERMS/M (M
must divide NTERMS).

4. Try all possible values of M and N as determined by 3 above until
factorization is successful, or the pairs of values are exhausted.

5. If factorization has failed as outlined in 4, then assume that the
polynomial is a simplified polynomial.



21

6. Once POLYFACT has assumed that the polynomial is a simplified,
polynomial, it uses some more surface features to determine how
the terms were added out or combined.

7. If the coefficients are all unity, then terms are added out in pairs.

8. If some or all of the coefficients are greater than unity, then sorry
of the terms can he added out in pairs or may simn!y be combined into
one term.

9. Using 7 and 8, POLYFACT decides whether to increment NTERMS hy I

or 2 and then proceeds as in 3 and 4, respectivel.:.

Each Lime the value of M and/or N changes, a new M x N possibility list is crea:..a.

The success or failure of determining the factorizhtion of a polvnomi.J

depends on the ability to determine the correct values for !I and N. The

determination of M and N depends on how many terms were in the polynomial

prior to being placed in canonical form. Some types of polynomials, e.g.

repeated factor, difference of powers, or single variable polynomials,

usually have a large number of the terms combined duriil ,Amplification.

However, in many instances these three types cat polynnmi3k can be classiiic.1

as special ones and the appropriate heuristics applied. If a polynomial

cannot he classified as a special polynomial or an attempted factorization

of it as a special polynomial fails, then factorization proceeds in the

normal manner outlined in this paper. Repeated factor and difference of power

polynomials are the only special case polynomials considered by this technique.

In Acme instances substitution is necessary to placc the polnomial in a form

recognizable as a special polynomial. Polynomials 10 and 12 in Appendix A

are examples of repeated factor polynomials. Polynomial 13 is a difference

of power polynomial.



The M x N Possibility List

As we stated previously, the M x N possibility list is the list of

valid possibilities that can be tried as terms in the M-term factor. All

possibilities appear in this list with implicitly defined unit coefficients.

This consideration saves considerable memory in storing the possibilitylist

and is a valid approach because POLYFACT has not yet created the F
0
and F

sets. These sets are much smaller than the M x N possibility list, and

the possibilities in them are the only ones that require the coefficients

1

22

to be determined. This discussion becomes much clearer when we discuss

the creation of the F
0
and F

1
sets.

We point out now that one reason the model-builder tries to specify

the correct values c,f M and N is that the size of the M x N possibility

list decreases as N increases. Thus, in most instances the size of the

M x N possibility list decreases during a sequence of factorization attempts

on a polynomial, thereby decreasing the search space for the terms in the

M-term factor. The suggested modification to the determination of N in

Section V removes, to a certain extent, this advantage; but it simplifies

the model-builder's tasks considerably.

The procedure for determining the M x N possibility list is described

below. The first possibilities to be placed in the possibility list are the

single variable possibilities. For each variable x in the polynomial a

sequence of quantities t
x
i is calculated. The quantity tx

i
is the number

of terms in the polynomial in which x (1<i<maxdeg(x)) appears as a factor.

The quantity 1
x

i

x
-K.N)/(M-K), 1 < K < M, where K is the number of terms in

the M-term factor in which xi can appear, is calculated for each x
i

. If

1
x
i>0, then xi is a valid possibility. An interpretation of 1

x
is that



23

it is the number of terms in the N-term factor in which x
i
appears as a

factor. After all single variable possibilities have been determined and

entered into the M x N possibility list, the multivariable possibilities,

i.e. possibilities that contain more than one variable, are determined.

The above procedure for determining single variable possibilities is

generalized to multivariable possibilities. The prospective multivariable

possibilities are determined by forming products, in a systematic manner, of

the single variable possibilities already in the M x N list. Every such product

of single variable possibilities is not neessarily a valid possibility, i.e.

if x , where x is now a multivariable quantity, does not satisfy the

requirement that 1
x
i>0, then it is not included in the M x N possibility list.

When a possibility is added to the possibility list, the quantities

t
i

, 1
i

, K, and an indicator as to whether it is a single variable or
x x

multivariable possibility become a part of the possibility entry. Some of

these quantities are used later in ranking possibilities.

The Factorization Process

The read._r may want to refer back to Fig. 1 as he begins reading this

section. The material discussed here is associated with subroutine FACTOR

in Fig. 1, and the heuristics used during a factorization attempt. Fig. 3

describes the operation of FACTOR during a factorization attempt.

The set of heuristics determined by traversing the classification tree

guides the actual factorization of a polynomial. The features used in

POLYFACT to classify polynomials are the following:

1. Coefficients are units.

2. The polynomial is a simplified polynomial (versus an unsimplifiable
one).



3. Set F
1

is empty.

4. The number of possibilities in set F
1

is less than (M-1) but greater
than zero.

24

5. Single variable polynomial.

6. Difference of powers polynomial.

7. Repeated factors polynomial.

Features 2, 3, and 4 are hidden features.

Initially, all terms in the polynomial are members of the set So. Each

term in S
0

is a candidate for the term T
1

selected to initiate a factorization

attempt. The following features of terms are used to induce learning for

term selection as described in Section II:

1. Degree of the term.

2. Number of variables in the term.

3. Size of the coefficient.

4. Is the coefficient prime?

The term T is selected from the terms remaining in So after the term selection

heuristics are applied. Another set S
1

is created that consists of all terms

in the polynomial with the exception of T. The terms in S
I
are those avaifible

for creating the set F .

1

The set F
0

is created next as indicated in Fig. 3. F
0

consists of all the

valid possibilities in T. F0 contains those factors of T that are in the

M x N possibility list. In the process of creating F
0,

die coefficient of T

is used to include in F
0

not only possibilities with unit coefficients; but

all other valid possibilities (that are factors of T) with coefficients

dividing the coefficient of T. Note that we have to include in Po only

possibilities with positive coefficients.

1T is used to indicate the term selected to initiate a factorization attempt.

04.17t:4



SET
FAIL
FLAG

START

CREATE
SET

EXIT

SELECT
TERM
FROM

CREATE
SET

F

BEST COPY AVAILABLE

RANK
POSSIBILITIES

IN

F

SELECT
POSSIBILITY

FROM
FO

CREATE
SET

F
I

CREATE
M-TERM
FACTOR

Fig. 3. Flow diagram of subroutine FACTOR

25



ALL
OMBINATIONS

TRIED

YES

NO

HAVE M
TERMS

YES

CCD OF
FACTOR3.1

NO

YES

DIVIDE
FACTOR INTO

SUBJECT
POLYNOMIAL

BEST COPY AVAILABLE

Fig. 3. Continued

26



27

The possibilities in F are ranked according to their merit (the ranking
0

process is described in Section II). The features used to rank the possibilities

are the following:

1. Is the possibility a single variable possibility?

2. Does the possibility have a low t
x

value?

3. Does the possibility have a high txi value?

4. Are all the coefficients in the polynomial units?

5. Is the coefficient of the possibility a unit?

6. is the term T a multivariable term?

The highest ranked usable possibility P in F0 is selected as a candidate

for the first term in the M-term factor and flagged so that it cannot be

selected again. A second set of possibilities F
1

is created using P. The

set F
1
consists of all those possibilities TP determined by TP =T' /TF where:

(1) T' is any term in S1, (2) TF=T/P, and (3) TP is a valid possibility.

For a possibility to be considered a candidate for a valid possibility for

F
0

and F1, its variable part must be contained in the M x N possibility list.

The set F
1
contains all those possibilities that are candidates for terms two

through M in the M-term factor. The possibilities in F1 are ranked using the

same heuristics used to rank the possibilities in F0.

An M-term factor is formed by selecting the highest ranked usable term

from F0 and the rest of the terms from F1. If the greatest common divisor

of the terms in this newly formed M-term factor is not one, then another M-term

factor is formed. When the greatest common divisor constraint is satisfied,

the M-term factor is divided into the subject polynomial. If the division

is successful, the quotient is the N-term factor; otherwise, another combination

of possibilities is selected to create another M --term factor, and the process

is repeated. The greatest common divisor constraint is imposed to reduce the



28

number of possible factors that can be generated for the M-term factor. The

use of this constraint is justified because any monomial factor is removed

from the polynomial before the M-term factor is sought.

If all of the possibilities in F0 have been selected without a successful

factorization attempt and there are no more terms in So (S0 after the term

selection heuristics are applied), then the model-builder decides the fate

of the polynomial. If a factorization attempt is successful, both factors

are saved and processed.

Because a record is maintained of all combinations of possibilities tried

for a given factorization attempt, the construction of a previously formed

factor is avoided. In POLYFACT, a possibility search tree (depth-first)

is used to record each combination of possibilities as it is tried. When

a new factor is formed, the tree is searched to determine if it has previously

been used. This tree can be used later in the analysis of a factorization

attempt.

The irreducibility of a polynomial is determined by the model-builder.

This is the most difficult problem associated with polynomial factorization.

The author has found no surface features of polynomials that givea hint to

the solution of the problem. For unsimplifiable polynomials, the scheme

described in this paper can easily determine whether or not a polynomial

is irreducible by simply trying all valid M x N factorizations with M < N.

A simplified polynomial is considered irreducible by POLYFACT when the M x N

possibility list has less than M possibilities in it, The M K N possibility

list decreases in size as M and/or N increase in size, We suspect that new

features discovered to improve the detection of irreducibility will be hidden

features. Note that we mentioned earlier that a few reducible polynomials can

fail to be factored by POLYFACT (these are described later in this section);



29

hence, POLYFACT will consider these to be irreducible polynomials. This is

a deficiency that Wang's algorithm can handle since his algorithm does not

terminate until it has proven that it has found all irreducible factors.

A Very Simple Example

We demonstrate the factorization process by factoring the following

simple polynomial (this polynomial happens to be unsimplifiable):

3 2 2 4 4 3 2 3 5 2 2 3 2
x y -x y -x z+x y z-xy z+y z+x yz -xy z .

We choose this simple polynomial to keep the M x N possibility list and the

F
0

and
F1

sets small.

The above polynomial has no monimial factor. The model-builder determines

the initial values for M and N (M=2 and N=4) and the possibility list:

1

{x, x
2

, y, y
2

, z, xy, x
2
y, xy

2
, xz, yz, y2 z }. The features vector for the

polynomial is the ordered set (1,0,0,0,0,0,0}. The only feature that

POLYFACT detects on the initial classification of this polynomial is that

the coefficients are units; hence, component one in the features vector is set.

Initially, So contains all eight terms in the polynomial. Next suppose

the term selection heuristics determine that the term -x
4
z is T. Set S1

3 5 2 2
now consists of {x

3 2 2 4 3
y ,-x y ,x y

2
z,-xy z,y z,x yz ,-xy

3
z
2
}. The set of

possibilities in T, F0, is {x,x2,z,xz }. Suppose that x has the highest rank

among the four possibilities in F. The set F1, i.e. the set of possibilities

determined by calculating TP=T'/TF, where T' is any term in S1 and

TF=T/P=-x
4
z/x=-x

3
z, contains only -y

2
since y

2
is the only possibility TP in

the 2 x 4 possibility list (the coefficient of TP is ignored when determining

whether it is in the possibility list).



31

In many instances a sufficient number of terms for creating this factor are

present in the polynomial al,d no terms to he added. Whenever terms must

be added to the polynomial to create the correct M-term factor for successful

factorization, POLYFACT adds them'in pairs. POLYFACT adds terms only when

the size of set F
1

is less than (M-1). Added terms are placed in Si, and

the corresponding possibilities are placed in F1. The new terms in S1 have

their use flags turned off until the corresponding possibility in F1 is chosen

as a term in the M-term factor. The new possibilities in F1 are assigned rank

zero so that those already in F
1

are selected first.

If the size of F
1

is less than (M-1) but not zero, POLYFACT assumes

those possibilities already in
F1

are correct and necessary for construction

of the M --term factor. The new possibilities in F1 are selected in serial

order to determine efficiently all the possible combinations that can be

used to create the M-term factors. If the size of F
1

is zero, then all

possible combinations of the new possibilities are tried until success or

failure occurs. In this case POLYFACT forms all possible combinations

of the possibilities in
F1

in normal fashion, i.e. the possibilities are

ranked, and the highest ranked ones are selected first.

The terms missing in polynomials that have unit coefficients are added

in by selecting possibilities from the M x N possibility list and forming

the product with TF (TF is described above and is the fi)St term in the

N-term factor). The terms missing in polynomials with coefficients larger

than one are determined by dividing TF into every term in the polynomial

not associated with a possibility already in FO and F1, i.e. the usable

terms in S
1.

If the quotient (ignoring coefficients) F =T' /TF is a possibility

in the M x N possibility list, then the term To=F*TF is a candidate for a

missing term; however, the coefficient of F, and hence T0, may be incorrect.



32

In general, T
0

is not the same as T'; the variable part of each term

is identical. The coefficient:; of F and "I are reconstructed by POLYFACT.
0

POLYFACT initializes the coefficient of F zero. When F is selected from

F
1

as a possibility for the M-term faetur, its coefficient is incremented

until it divides at least tw' usable term in S1. When the coefficient of

this possibility becomes so large that the has no chance of

dividing at least two usable terms in S , it has its coefficient reset to

zero and another possibility is selected Fi.

Whenever POLYFACT selects a newpossibility from F that is associated
1

with an added term, the use flags of the ::::rresponding pair of new terms in

S
1
are set. Then POLYFACT checks the usable terms in S

1
to determine which

of these terms can be combined with a new term. POLYFACT uses this technique

to reconstruct the polynomial as it exist,d before simplification occurred.

V. RESULTS

This section provides some of the results of factoring over 300.polynomials

using POLYFACT. Most of the 300 plus polynomials factored by POLYFACT are

random polynomials with number of termb (aftcr being placed in canonical form)

[2,84], number of variables [2,5], degree of each variable [0,12], and

coefficients [-10000,10000]. The random polynomials are generated by generating

factors randomly, multiplying them togethex, and then simplifying the expanded

form. The random factors are developed by generating terms randomly by selecting

the number of variables, degree of each variable, and coefficient from the

range of values for each given above. Appendix A contains a subset of these

polynomials. Space (the 300 plus polynomial.; in factored form occupy 20

typed pages) does not allow us to include in Appendix A all of the polynomials

jer
46011.401

.14



33

factored by POLYFACT during this research: ,herefore, in same instances we

provide tables to illustrate important WWP 7,iviuw all the polynomials

associated with them, e.g. Table I. Table:. - IV Jemonstrate the importance

of learning to the efficiency of operation of POLYFACT. An analysis of

variance experiment is also described, and Cle :sources located that tend to

influence the factorization times.

Results Associated with Learning

These results were obtained to demonstrate that the capabilities of

POLYFACT are increased through learning. Several approaches could be taken

to assess the influence of learning on program performance or program efficiency.

By efficiency we mean efficiency with respect to execution time and memory

used. An obvious way to measure program efficiency through learning in

POLYFACT is to factor several polynomials with and without the use of learning

and then measure the size of the possibility search tree (Section Ii) in

each case. With this approach program efficiency is measured by comparing

the size of the possibility search tree created using learning with that

created without learning. This is characteristic of past approaches to

evaluating learning [17]. While the above approach is valid for evaluating

some programs, we do not believe that is is satisfactory for POLYFACT since

it is only a gross measure of learning. Instead, we choose an approach that

illustrates explicitly the effectiveness of POLYFACT in selecting bo,lh terms

and possibilities.

Term Selection

The term selection tests consist of factoring several sequences of



randomly generated polynomials and determining for each polynomial: (1) the

minimum number of possibilities in a term, (2) the maximum number of possibilities

in a term, and (3) the number of possibilities in the term selected. We

consider that POLYFACT selects "good" terms when it selects terms with a minimum

number of possibilities. The term selection tests are also used to determine

whether or not POLYFACT can adjust the order of the term selection heuristics

for randomly generated polynomials with different ranges of values for size

of coefficients, degree of variables, etc.

Tableq contains the results of selecting terms for one sequence of

random polynomials. The random polynomials for this sequence have the charac-

teristics: coefficients [-64,64], [- 400,400], [- 2500,2500], degree of

variables [0,8], [0,12], [0,12], and number of variables [2,4], [2,5], [2,5],

respectively. The first six polynomials in this sequence are the training

sequence. To conserve space, the random polynomials in this sequence are

not included in Appendix A.

A summary of the results of the term selection tests is as follows:

1. The term selected to initiate factorization in 73 percent of the
polynomials has the minimum number of possibilities (the percentage
for the sequence in Table I, disregarding the training sequence, is
about 67 percent).

2. POLYFACT orders the term selection heuristics depending on the
characteristics of the polynomials (the order depends on the range
of values far number of variables, degree of variables, etc.)

3. Term selection does increase the efficiency of POLYFACT considerably
by allowing, in most cases, for as small a search space as possible.

For the sequence of polynomials in Table I, the number of variables is the

most important feature for selecting a term with minimum number of possibilities

with the degree of term and the size of coefficient of almost equal importance.

Another sequence of polynomials could cause POLYFACT to order the term selection



TABLE I
BEST COPY AVAILABLE

TERM SELECTION FOR RANDOM POLYNOMIALS

Polynomial

Minimum
Number of

Possibilities
In A Term

Maximum
Number of

Possibilities
In A Term

Number of
Possibilities

In Term
Selected

3 11 36 20

2 20 47 30

17

2

5

20

24

47

6
, 25

18 7 14 7

19 4 13 4

99 2 115 2

112 84 921 104

100 36 1139 36

135 25 160 25

179 14 38 14

180' 2 201 2

181 14 1014 14

182 19 166 19

183 11 54 24

184 12 75 14

185 4 53 4

186 51 305 54

187 12 174 12

70 8 26 8

188 30 459 30

189 75 468 91

190 15 190 15

191 5 304 5

192 20 204 30

193 23 230 25

194 17 294 17

195 18 130 18

196
197

21
6

149
379

21
6

198 17 631 34

199 12 146 12

200 27 1140 42

201 6 241 12

202 32 489 32

203 24 398 24

204 30 645 30

35



36

BEST COPY AVAILABLE

heuristics differently. Learning allows POLYFACT to adjust the order of

heuristics so that a term with the minimum number of possibilities is found

in most cases. The selection of a term is very important because the analysis

of variance results show that the number of possibilities in a term is one of

the two main contributors to the factorization time for a polynomial.

Possibility Selection Results

We associate a value that we term efficiency with possibility selection.

The efficiency value is an assessment of the capability of POLYFACT to learn

to rank the possibilities. Before we define efficiency the following four

definitions are needed:

The possibility search space is the set of possibilities in the

M x N possibility list.

The actual possibility search space is the set of possibilities
generated by the term selected to initiate the factorization
process.

Let ri, r2, ..., r be the n(n>1) values for the ranks of the
possibilities in the actual search space, and suppose the
possibility selected from Fn that leads to a successful factoriza-
tion has rank r

i
(1<i<n). 'Men the reduced possibili search space

..../ ....

consists of all those possibilities with rank equal to or exceeding ri.

The size of a possibility search space is the number of possibilities

in the search space and is denoted by 11 possibility search space d.

The efficiency with respect to possibility selection is defined as:

Efficiency 1I actual search space fi - 11 reduced search space d

11 actual search space 11

The efficiency values shown in Table II are given as a ratio to explicitly

show the size of the actual search space (denominator) and the number of

possibilities tn the actual search space that are not members of the reduced

search space (numerator). The efficiency value in decimal form allows the

reader to ascertain that efficiency increases with experience. All

uTh
o.d



37

possibilities with the same rank have an equally likely chance of being

selected as a term in a factor.

The possibility selection tests consist of factoring different sequences

of randomly generated polynomials and determining the efficiency values

for each polynomial. The polynomials in Tables II - V are in Appendix A.

We show that POLYFACT learns to select the "good" possibilities by demonstrating

that the efficiency values tend to increase for successive factorizations of

randomly generated polynomials. An asterisk ( *) to the right of the efficiency

values in Table II indicates that only the highest ranked possibilities are

in the reduced possibility search space.

Table II is one of three tables used in Claybrook [5] to gather the

following results:

1. The size of the actual search space is decreased usually by 50 to

80 percent through learning.

2. As POLYFACT gains in experience it becomes more discriminant in

the ranking of possibilities, i.e. some polynomials have several

different ranks for the possibilities in their actual search spaces.

3. In most cases the reduced search space consists of only the highest

ranked possibilities.

Result (2) and Table II show this factorization scheme could be implemented

to consider a factorization attempt to fail when all of the highest ranked

possibilities in F
0

have been used as the first term in the M-term factor,

i.e. the possibilities with ranks lower than the highest rank are never

considered. Then usually only 20 to 50 percent of the possibilities in

F
0

would even be considered. But this consideration may cause a few

reducible polynomials, e.g. polynomial 39 in Table II, to not be factored

because a lower ranked possibility in F0 led to a successful factorization.

This idea requires that a proper training sequence of polynomials be input

to prime the learning associated with possibility selection.



38

TABLE II

LFFICIENCY VALUES
BEST COPY AVAILABLE

SEQUENCE #1 SEQUENCE #2

Polynomial Efficiency Polynomial Efficiency

20 0(.00) 20 0(.00)

2 0(.00) 2 0(.00)

21 6/12(.50) 45 1/2(.50)*
22 2/8(.25)* 46 0/18(.00)
23 1/6(.17) 47 0/46(.00)
24 1/3(.33)* 48 2/8(.25)*
25 3/4(.75)* 49 17/36(.47)

26 6/14(.43)* 50 1/12(.08)*

27 5/14(..36)* 51 10/47(.21)

28 2/6(.33) 52 60/100(.60)*
29 11/16(.69)* 53 37/60(.62)*
30 5/17(.29) 54 3/11(.27)*

31 4/15(.27)* 55 17/25(.68)*
32 5/11(.45)* 56 71/99(.71)*
33 22/28(.79)* 57 34/45(.76)*

34 13/22(.59)* 58 81/100(.81)*
35 30/49(.61)* 59 5/7(.71)*
36 23/53(.43) 60 25/33(.75)*

37 3/6(.50)* 61 47/69(.68)*
38 6/10(.60)* 62 9/10(.90)*
39 4/8(.50)
40 44/56(.79)*
41 7/19(.37)*
42 5/6(.83)*
43 21/24(.87)*
44 50/60(.83)*

Recurrent Factorization Results

Another test that further demonstrates POLYFACT's learning and factori-

sation capabilities is the recurrent factorization test. This test consists

of factoring several sequences of polynomials, generated by the author,

that have the same polynomial appearing more than once in a single sequence.



39

We maintain that learning occurs in POLYFACT when the factorization times

decrease for subsequent factorizations of the same polynomial. The purpose

of Tables III and IV is to show that POLYFACT learns from previous experience.

Tabs III and IV show that POLYFACT usually factors the second and third

occurrence of the same polynomial in a single sequence in less time than for

the initial factoring.

An analysis of Tables III and IV is summarized briefly:

1. the order of the polynomials in the sequences influence the
factorization times, e.g. polynomials 2 and 9 in sequences
3 and 4,

2. after two or more factorizations of the same polynomial in a
given sequence, further reduction in the factorization time is
usually quite small,

3. POLYFACT is capable of factoring difficult polynomials, e.g.
polynomials 6 and 8, and

4. subsequent factorizations of the same polynomial indicate the
reduction in factorization time is markedly significant (on
the order of 100 to 300 per cent).

Some Comparisons with Wang's Algorithm

We stated previously that Wang's algorithm (24) for polynomial factorization

is an implementation of Herlekamp's algorithm w th some variations. The Wang

algorithm is implemented in LISP 1.5 on a PDP-. 1 at M.I.T. as part of the

MACSYMA system (15]. We do not compare the algorithms themselves because they

are significantly different approaches to polynomial factorization; and hence,

there are few areas for comparison. However, we provide factorization results

of some multivariable polynomials factored by POLYFACT and Wang's algorithm.

Table V shows the factorization times for these polynomials.



TABLE III

RECURRENT FACTORIZATIONS BEST
a ..

SEQUENCE #1 SEQUENCE #2

Polynomial Factorization Time
Zseconds)

Polynomial Factorization Time
(seconds)

1

2

8

6

2

8

6

2

8

6

2.48
16.36

864.72
781.26

8.02
208.34
331.20

7.94
208.00
380.08

3

7

7

7

9

9

9

4

4

4

5

5

5

2.32
16.34
11.88
11.88

222.74
221.74

174.66
53.94
29.12
28.00
14.22
4.48
4.48

TABLE IV

RECURRENT FACTORIZATIONS

SEQUENCE #3 SEQUENCE #4

Polynomial Factorization Time
(seconds)

Polynomial Factorization Time
iseconds)

3 2.32 3 2.32

63 169.44 2 12.50

9 554.84 64 112.52

63 95.16 65 9.94

9 174.62 2 11.14

63 95.16 64 102.82

9 174.34 65 11.86

64 180.64 2 6.86

2 24.28 64 49.42

16 17.14 65 11.86

64 126.30 5 16.98

2 19.96 7 32.16

16 10.06 9 222.68

64 50.02 5 15.62

2 14.08 7 24.72

16 10.06 9 221.46
5 11.68

7 24.72
9 174.62

4 3

40



41

TABLE V

COMPARISON OF F,AICTOLUY.AiloN itnEs (iN sEcoNaF)+ BEST Copy AVAUB

Polynomial POLYFACT
(with learning)

9

12

16

67

68

69

70

71

72

73

Wang's Algorithm

174.66
6.35

10.06
149.26
160.03
172.16

1.97
25.38
67.49
129.01

**

6.74
**

**
**
**

1.85
23.83
76.37

476.11

fTbe reader should note that the 1108 is approximately three times as fast

as the PDP-10.

The entries in Table V that contain asterisks (**) indicate that the memory

allocation of the PDP-10 at M.I.T. has to be increased to do some of the more

difficult polynomials given. This was not done, for obvious reasons, so no

factorization times are available for Wang's algorithm. POLYFACT uses 53K

(K- 02..E words of memory on the UNIVAC 1108 for factoring most polynomials.

This 53K words includes 28K words for the storage of approximately 230 sub-

routirPs and functions that comprise POLYFACT. The actual working space in

POLYFACT is 25K words. Berlekamp's algorithm implemented by Wang has about

40K words (36 bits/word) available for working space.

One of the problems encountered by Wang's implementation is that large

amounts of storage are required in factoring the more difficult polynomials

(those with high degree and large numbers of terms). The part of POLYFACT

that necessitates the largest use of memory is the M x N possibility list and

the possibility search tree. The size of the M x N list is primarily a function

44



of the number of variables and the degree of the terms (more specifically the

size of the M x N list is a function of the concentration of the variables in

0 .41 S 4 r

42

a a .
the terms and the degree of the variables). The size of the possibility

search tree is dependent on the value of M and how well POLYFACT learns to

select terms and possibilities.

Computing_ Costs

...le

We have tried to develop a formulation of the computing costs for this

factorization technique. However, the heuristic nature of the technique

involving learning has prohibited us from formulating costs. All of the

factors that dominate computing costs, e.g. M and the number of possibilities

in the term T, are unknown until after factorization. The analysis of

variance experiment is our best attempt to isolate the factors that tend to

control the cost of factorization.

The encouraging result from the analysis of variance results is that the

degree of the polynomial does not strongly influence perfrrmance as it does in

Berlekamp-type algorithms. The analysis of variance tables (tables VI and VII)

show that the factorization time is influenced somewhat by the number of possibilities

in term T, and the number of possibilities in a term is influenced primarily by

the number of variables in the term. Thus, our technique works particularly

well, with respect to computing costs, for multivariable polynomials having at

least one single variable term.

--therfulness of This Factorization Scheme

The author sees the usefulness of this factorization scheme in four areas.

First, even though this technique is combinatorial in nature, it could in some



cases, obtain a solution more quickly than Hensel's approach. Polynomial 5

in Appendix A is an example of a situation where Hensel's Lemma would blow up
11

43

's a great deal. Wang's algorithm depends on substituting 0, 1, or -1 for all

but one of the variables and then factoring the resulting univariate polynomial.

Wang says that it is desirable to substitute as many zeros as possible because

nonzero substitutions can cause some intermediate expression growth. Substitution

of zeros for all but one variable can lead to the "bad zero" case mentioned earlier.

Secondly, this technique could be combined with the Berlekamp-Hensel algorithm

to handle some of the polynomials that cause problems for it (the author is

currently working on a paper discussing this idea).

Thirdly, the idea presented through this technique deviates sharply from

the current approaches to polynomial factorization by incorporating learning

in it. Learning allows the algorithm to adjust to the sequence of polynomials

factored with the result that factorization is performed more efficiently.

We feel that new approaches to factorization should be presented, hopefully

with the prospect that some useful ideas can be extracted. Finally, the

scheme implemented in POLYFACT performs quite well despite the relatively

inefficient implementation. We feel that the technique merits consideration;

but we still consider the Berlekamp algorithms to be the most general

factorization algorithms available.

Analysis of Variance Experiment

The performance of the mathematically oriented factoring algorithms,

e.g. Musser's (19) and Berlekamp's [2] become less efficient as the degree of

the polynomial increases. The effect of the number of variables and the size of

the factors on the factorization times of these algorithms has not been published.

I WI.11.....1



44

In order to determine what factuf 1,Y:1uence the factorization times

for our scheme, we con:II:ler an chhistin,,, of a factorial analy-

sis of variance (11. The hnal'!sis e variance separates the variations

among all the observations into two p..0 each part measuring variability

attributable to some specific source. The level of significance is con-

sidered to be 10 per cent.

The taetors considered in Table VI are:

1. M the size of the !'l-term factor,

2. NVARS - the number of variables in the polynomial, and

3. NPOSS the number of possibilities in the tern T.

The factors in Table VII are:

1. :1 - the size of the ;l -term factor,

2. N - the size of the N-term factor,

3. NV the number of variables in the term T, and

4. DEG - the degree of the term T.

Some of the important observations from the analysis of variance experi-

ment arc:

1. The factorization time is quite dependent on the value of M, since

F.90(1,4)=4.54.

2. The factorization time is somewhat dependfnt on the number of
possibilities in the term T, since F.90(2,4)=4.32.

3. The number of possibilities in T depends most heavily on the
number of variables in T, followed by the degree of T, since
F.90(1,2)=8.53 and Fcm(2,2)=9.0.

4. The degree of the polynomial is not of major importance in deter-

mining the factorization time.

5. The effect f the number of variables in the polynomial on the
factorization time is almost negligible.



TABLE VI

ANALYSIS OF VARIANCE
(FACTORIZATION TIME IS THE DEFENDENT VARIABLE)

45

BEST COPY AVAILABLE

Source Degrees of
Freedom

Sums of
Squares

Mean
Squares

F

M 1 142,732.b2 142,702.62 6.53*

NVARS 2 2,553.06 1,276.06 0.05

NPOSS 2 158,432.96 79,216.48 3.62

M x NVARS 2 63.80 31.90 0.002

M x NPOSS 2 142,934.83 71,467.41 3.27

NVARS x NPOSS 4 83,081.77 20,770.44 0.95

RESIDUAL 4 87,423.08 21,855.77

TOTAL 17 617,192.12

*Significant at the 0.10 level in this and all following tables.

The reason that the number of variables in the polinomial'and the

degree of the polynomial are usually not heavy contributors to the factori-

zation time is that this factorization scheme tries to.select a term to

initiate factorization that has a minimum number of variables in it and

is of minimum degree. This tends to decrease the importance of these two

factors.

We note from the analysis of variance experiment that the factoriza-

tion time increases with the size of the M-term factor. This increase in

factorization time is due partly to the fact that the larger the value of M,

the more combinations of possibilities that can exist. However, this is not

the only contributor to the value of M influencing the factorization time.

The primary purpose of the initial implementation of this scheme in POLYFACT

was to study learning in a complex problem environment and not necessarily

to produce an efficient implementation. The importance of the size of M

can be reduced considerably in POLYFACT by improving the technique for



TABLE VII

ANALYSIS OF VARIANCE
(NUMBER OF POSSIBILITIES IN T IS THE DEPENDENT VARIABLE)

46

BEST COPY AVAILABLE

Source Degrees of
Freedom

Sums of
Squares

Mean
Squares

H 1 425.06 425.04 2.15

N 1 0.38 0.38 0.002

NV 1 1,926.04 1,926.04 9.68*
DEG 2 3,077.08 1,538.54 7.74

M x N 1 477.04 477.04 2.40

M x NV 1 165.38 165.38 0.83

M x DEG 2 326.58 163.29 0.82

N x NV 1 715.04 715.04 3.60

N x DEG 2 704.25 352.13 1.77

NV x DEG 2 430.08 215.04 1.08

M x N x NV 1 3.37 3.37 0.017

M x N x DEG 2 165.08 82.54 0.42

M x NV x DEG 2 150.25 75.13 0.38

N x NV x DEC 2 847.58 423.79 2.13

RESIDUAL 2 397.75 198.88

TOTAL 23 9,810.96

searching the possibility search tree, and by providing a more efficient

division algorithm. The division process in POLYFACT is a heuristic on

and is not the usual polynomial division algorithms [7], [12].

Other Implementation Considerations and Possible Modifications

We feel that this factorization scheme can be made more efficient and

perhaps more operable than the implementation in POLYFACT. We are currently

investigating the possibility of incorporatingipmeoftheideas in the Berlekamp-

Hensel algorithm in this factorization scheme. Also the coefficient bounds

formulation [27] can be used reduce the number of possibilities available in

2.0



47

the F
0

and F
1

sets. The replacement of the heuristic division algorithm by

another polynomial division algorithm will improve the efficiency of operation

considerably. By not requiring an explicit value for N, the number of combinations

of M and N determined by the model-builder is greatly reduced, i.e. only

the value of M will be specified.

The factorization scheme requires the value of N to form the M x N

possibility list; however, in some instances (when terms have been combined)

specifying N depends on predicting the number of terms in the polynomial

prior to simplification. This places an unnecessary constraint on the model-

builder. We propose the following as a possible alternative:

1. Perform factorization as described in this paper when the poly-
nomial is considered unsimplifiable. This allows N to be expli-
citly defined, and the M x N possibility list to be constructed
as outlined in Section IV.

2. When a polynomial is considered simplified then:

a. Determine M and create the M x N possibility list by using
NmKmax(M,NTERMS/M1), where 15.KfII and I is chosen by the
implementer and [ is the greatest integer function.

b. Proceed with the factorization attempt as before; but use
another more efficient division algorithm than the heuristic
one mentioned &boy,.

c. If the attempt is unsuccessful, modify M and repeat the process.

We suggest that the initial value of K for a factorization attempt (with a

fixed value of M) be greater than one. Then if factorization is unsuccessful,

reduce K to one and try again. The reason for choosing an initial value of K

greater than one is that the size of the possibility list decreases as N

increases, and the possibilities for construction of the M-term factor might

be in the smaller list. This could result in a saving of time and memory.



48

VI. SUMMARY

POLYFACT demonstrates that learning can be used to improve significantly

the efficiency of a complex program in attempting to solve a difficult problem -

the factorization of multivariable polynomials. The term selection tests show

that POLYFACT selects a term with the minimum number of possibilities in

approximately 73 percent of the polynomials factored. The posaibility tests

demonstrate that in most cases POLYFACT need consider only 20 to 50 percent

of the possibilities in the actual search space.

Previous attempts at determining the symbolic factorization of multivariable

polynomials using a purely heuristic approach have indicated very little succe_is.

The factorization tests described in this paper demonstrate that POLYFACT can

factor many nontrivial polynomials. The degree of the polynomial and the

number of variables in the polynomial influence the factorization times very

little, as compared to the Berlekamp algorithms. The size of the M-term factor

proves to influence the factorization times most. Surprisingly POLYFACT

competes with Wang's implementation of Berlekamp's algorithm with respect to

memory usage.

This heuristic factorization scheme appears to work quite well on polynomials

that cause problems for Wang's algorithm, e.g. high degree polynomials, "bad

zero" polynomials, etc. We feel that some of the ideas presented in this paper

can be used to improve the performance of the more general Berlekamp algorithms,

especially in the reconstruction of multivariable factors from the univariate

factorization of the original polynomial. Also, some of the ideas in the

Berlekamp algorithms can be used to definitely improve the performance of this

technique implemented in POLYFACT.



49

ACKNOWLEDGEMENTS

The writer wishes to thank Jim Perry of the University of

Connecticut for some critical observations of the initial draft of

this paper; and also Richard Fateman and Paul Wang of Project MAC for

their assistance in factoring some multivariable polynomials using

Dr. Wang's implementation of Berlekamp's algorithm.



APPENDIX A

POLYNOMIALS
BEST WV AVAILABLE

All of these polynomials were factored by POLYFACT as part of the research
described in this paper.

1. (8x-5y)(xy-8xz2.1.z2_5y22)

2. (5x4+3x5-6z4)(7=3+4x2y2-9y3z)

50

3. (yz .1.2( z3 -
x3y4)(_12z2fty+x2z)

4. (x3y2)(1.1.xy2z4+22y2z4)(z24.x2y5z24,22z54.25.1.x2yz3fty2z4+x2y3z5+xyz44.A3y)

5. (-y10z14+xl7y4+x9z10)(x9y3zw4+x6v4z8+1473/5)

6. (5x2y3-6x5z3+2xyz )(23w4-xy2z2-x3y0/2-x5y6w4)(.z6w4-x4y2+y2z3-x3yw3-x2y2z2w2+0z)

7. (z3w4_xy2z2_x3y/42_x5y6w4)(_x6w4_x4y2+5,2z3_x3yw3..x2y2z2u24.x5z)

8. (4y21424.7x2y2zw-2 +6x-3y+6x3z7 0,2)(4w+4x2z2w+4, 3zw4.3x2y2w24.x2yw24.6y2)

9. (x2y3-x5z3+yz)(z3w4-xy 2z2..x3yw2..x5y6w4)(_z6w4_x4y241,2z3_x3yw3_x2y2z2/02.1.x5z)

10. (z+y+x-3)3

11. (z)(3xyzw-26y3x2-8xyzw2+14x2z)(-6x5 ylz3w3+27x2y3z3w3-47xyzw- 34x2y2w24,5xy2

+47xw3+6xyz2w-39x2y2z2w3_ 3zw+3x21x-3y 22 3yw3+19x3y2zw3- 37y2z2w+26xyz2+26x3y3z

.47x2y2z2w2_ 47x2yw2)

12. (z+y+x -3)3(z+y+x -2)2

13. (x-y-z+w)(x-y+z-w)

14. (x2y)(11y2-22x4+33x5y2+35x3y)(22y 5+37x4_18x4y5_38x2y4+29x2y3_ 41x4y2-26x3y4)

15. (70wu+x2yw+t2xyzu2 )(97xw+45xy2zu2-14z2w2-56y2wu+96xy2 zwu-86xz 2w+2xy2w2u+81xz)

16. (29x12y12z3w4+3y20w154.21x3z2_15y2z16)(x21-y14_z3141,72+y184x2y2_wl2z20)

17. (z -r -x2y+w -xy2)( -1 -x+y -z2w-z+zw2+w)

18. (xy2+21xz+zy2+x5z8 -9)3

19. (x-y-z+w)(x2-2xy+y2-xz+y zftw-yw+z2-2zw+w2)

20. (x222-y3)(x-y+z)

21. (x2y)(3y51.5x4_3x4y5_15x2y4)(y2_3x44.5x5y6+5x3y)



(4y2_2xy?.+3x4) (_3+7y2_x2y)22. (x6y4

23. (x)(2x-4y3-5y6-3x3y4)(-6-3xy-4x4y3+3xy4)

24. (xy2) (4x-xy4-y3+xy3) (6+4x4y6+y-2x6)

25. (x2Y2) (5y+3x5+x5y) (y4+4x4y4+x4)

26. (x) (4x2-y5.1.7x2y3+7xy2) / 6y5-6x4y5)

27. (6xyz) (6x5-x4y6-5y3z5)(x3-x4+0z3)

28. (yx3) (2z2+5xy5w4+6x2y5z2w5) (-7-2xy6zw6.475zw6+7x2y6z5w3_3x4y3z5w2)

29. ( x4y) (6x2+73cy-3y4-4xy2) (-3x2-x3+4x4y-2y5-x6y4)

30. (xy)(2x+5y4-2x6y)( 6x4-6xy 3_7y4+3x3y4_x4y3)

31. (y) (5y3+3y4-2x4) (-3y2+7x6y6_4x3y5_7x6)

32. (2y223) (2z2_3x5y2_3x5y4z3) (3z64.3xy6_5x2y5z2)

33. (2x4y5v4) (4z3+3y3z6iffy2 z-6x-2y--.) (2xz+2x2w2+2x4z2v2+z4v)

34. (2x4yz2) (3x24.3y3z5+x2y3z3-2z2) (.. 7x3z2+4y4+3x2y3z3)

35. (x6y2z) (7x-2x2yz3+2y3z3)(-6=3-7y6z-6xy2z2+x2y5z3-6x3y3)

36. (x2y2zw)(7z5w5_3x3y5w2+3xy6z2w24.7x5y6z )(2-2x4y3z2-x5y3w2+5xy3z3)

(x4y2z4) (3x2+3yz-4x5y2z2-5x2z3) (-3x2_4y6+6x2z5_5x3y4z4_5x3y6z3)

38. (x5y3z2) (4y4.7xy3z5+x2_5x3y4z4) (_3y3_3x3y_z4_7x3z5)

39. (x2yz)(x4_2y4z2+2x4z )(3x+3yz5+6x2y4z5+x4y5z4)

40. (x5y3z) (6z4-7y4z2-2y4) (7x2z24.3x4y3+7y2z3_2xy2z4_7x3z)

41. (xz) (z3-6x3yz4_3xy4) (_7x4_5x2y2z3_4x4z24.7y3z4+4x5z5)

42. (Y) (2x+x6y3z6-y) (-3z5-y4z6-x3y4-7xyz)

43. (sx+x6y3z6-y-4x2y 2) (6y4_6x2y5+3x3y+4y6_6x6y4)

2(xYz) (2x6 23 34 4 4+5xyz-4x y z ) (3xz5- 4x3z6)44. 5x5y4z6+y4z5_x5y3_

45. (11y-22x2+33x2y2+35x)(-41+10x3y+22xy3-18x3y3+67x2y2-41x3y2-26x2y3+5y2+3x2)

46. (xy) (47xy+4xy2u+z3w3-13xyz3w2u3)(8xy2+43x3y3z3u-23x3y2wu-20x2y2z2w2u2

-46xwu2+45x3-48x3y2zwu-9y3wu+36xy3zwu2+5x2y3uu+36xyz3v3u2+36y3w2u

-29xy3z2w3+14x3y3z2w3+46x323u+31y2w3u2-9y2u2)

51



IRST cOrf JIMMIE
52

47. (x2yzwu2)(y3_32x2zw3u+29yz2w3u-44xw2) (-26x2u2+48yz2wu_x2y2zw2u2)

48. (y2) (21x-32x3z+7z) (19x+28x2y3+9x2y-2x2y2+23x3yz3+32z2+19xz3-10x2y3z

+19x2y2z2-8xz+22x2z2-13x32 3se-28x2z3)

49. (z)(14x2+3xyw-26y3z-8xyw2) (5xy2-6x3y3z3w3+27x2y3z3w3-47xyzw-34x2y2w2

+47xw3.1.6xyz2w_39xyz2w3_ 3 322w+3xyw21x-y 2 3 3+19x3y2zw3_37y2z2w+26x3y3z

47x2y2 z 3w
2-47x2 yv2)

50. (xy) (45x-28x2-46y2) (-14+5xy
2-34y2-15x2)

51. (zw2u) (42z2+46x3y3u-7x2y3zw2u2)(15x2z3w_4y3=42_37x3y3z3w-6x3y3u

+42xzwu2-2x3ywu3-6xz2u3+19x3z3w2)

52. (x3yz) (31x222y2zw-23xyz2w2+40xyw3) (-24w2+25xz3w2-42xy2w3+28z3w3-29xz2)

53. (y2) (14zw+63x3z2w2-41x3yw+46x2yz) (33zw+49x2y+9x3z2w3-26x2y2z2w)

54. (yz) (14y2-38zw3-41xz-46x3z2w2)(29Y+9x2z2w.28x2y2z+43xz3w3+52x3zw3

+4xyz2w3+7x2y3z2w_8xz2_33x2y2zw3+21y2zw2+15xyz2-37xy3z3-21x3yz3

40y3+35xy3+8y2z3w2+20x2zw2)

55. (x) (6y2w-14xy3zw2-34xz3+27y3z2w2)
(_43y2+20x2y2z+26z2w3+44x2w2+18xw2

+17x2y 3z2
w

3)

56. (yz) (44x2z2-41x3z2-26yz3+24y2w2)(-12x2z-38xzw+34x3yzw2_y2w3_6xy2w3)

57. (xy2z2) (19xy2w2+37x3yz3u3_x3z3w2u2_18y2zw3) (33u3_

+13yw2u3+16x5y2w2u2)

2 7x2zw3-16x2y zw3

58. (x2z (8x_43y2zw-43y2w2u)
(..8x2w2u2_16x2yz3u+49x3yz3wu2+12z3w3

_5x2yzw2 2_u 40xyzw2u)

59. (29z 24.27y2z3_23x3y-2-49x) (-22xy+28x2yz-38x2y3z3-43x3y-18x3z2-78xy3z2

+35y2z3+44yz3 +y3z 2+20xy27.-42x
3
yz

3-31x 2
y2+2y3+25y2z-5yz-46x2y2z)

60. (y2z) (39yw-49xz+25x3zw3) (37yzw-48x3zw2+49x2y3w-9z3w3-10x2y2z+43xy3z2w3

+41 2 zw
3-33x2y

2 zw)

61. (xz) (31yz2+20xyw-44x
2

y
2 z

2
w

3-39xz2
w

3) (-44yw-9xz3w3+30z3w-37x3y2w

3x2yz2w 3+21y2z 3w-20xyz3w2-7yz2w 2-24x3y3)



=run AVAILABLE

62. (yz)(11xw+39x3y2zw-3x2z+yz2w3)(- 19w2-42xy 2w2-38x -47yzw2+2y3zw

-46x2y2zw-27x3y3w+46y 2z2w3-14x2y3z)

63. (r2v3-rv3- t5)(z3w4_xy2z2..x3yw2..x5y6w4)(-z6w4_x4y2.172z3_x3yw3

_x2y2.2w2fx5z)

64. (24yz+68xz3-72x3y4 )(_xl0z141.x17y4ft9z18)

65. (24yz+68xz3-72x3y4)(-y2z2+ xy+x2z)

66. (x)(47y+4y2u+z 2w2_13xyz2wu
2)(45x2.

+43
x2y

2z2u-23x2yw+16xy2zwu-46xu2

-48x2 ywu+27y2w0.5x2y2w+36xyz2w2u_29y2
zw2+14x2y2zw2+46x2y2u+8xy

+31yw2u2-9y2u2)

67. (xz2u4 )(15z2u+10xy3wu2+18xz2w3412+6y3z2w2)(.. 12y3z2+48x2y3z3u2

+2x2y2wu2- 25yz4w3u2_32y4z3w4u2_43m2+8x3z4wu-11x3yw2u-44xy4z4wu)

68. (6xy+40x2w+31xzu2+35y2w2)(24xy+9x 2wu2+44z 2w2u+37xzw2+xy 2z2w2u2

+29y2w2.--y+31 2u2+37yz2w2+24x2yz 2 zu2+23xyz+13x2y2w2u+21xyzwu2+12x2yzw

+8z2w2u2+22xy2+22w2 u2+12xy2z2 u2+43xyz2w+43x2yu+39xzwte .7zw2u2

+24xy
2
z
2
wu

2
+27x

2
uw

2
u+41y

2
z+42y

2
w
2
u
2
)

69. (xy)(47xy+4xy2u-z3w3-13xyz3w2u3) (45x3+43x3y3z3u-23x3y2wu-20x2y2z2w2u2

-46xwu2-48x3',%wu-9y 3
3wu+36xyz3w3u2+36y3w2u-29xy3z2w3wu+36xy3zwu2.1.5x2y

+14x3y 3z2w3+46x3y
2
u+8xy

2
+31y

2
w
3
u
2
-9y

2
u
2
)

70. (r+Y+x-3)
3

71. (47xy+z
3
w
2
-w

2
)(45x 4-3z

3
-y

2
-9y

2
+2wz)

3 5 6 2 5 4 4 5 2 4 2 3 4 2 372. (35x y+33x y +1Iy -22x )(22y +37x -18x y -38x y +29x y -4Ix y -26x y 4
)

73. (x6y3z2) (29x+3xy
2 3 2 3 2 2 3 3 2 2 2 2+z w -12xvz w -w )(18x y+3z -y +14y w -8xy +2wz)

53



54

REFERENCES

BEST COPY AVAILABLE

1. Bennett, Carl A. and Franklin, Norman A. Statistical Analysis in Chemistry
and the Chemical Industry, Wiley, 1954, pp. 319-469.

2. Berlekamp, E. R. "Factoring Polynomials Over Large Finite Fields",
Mathematics of Computation, Vol. 24, #111, July, 1970, pp. 713-735.

3. Berlekamp, E. R. "Factoring Polynomials Over Finite Fields", Bell System
Technological Journal, Vol. 46, 1967, pp. 1853-1859.

4. Brown, W. S. "On Euclid's Algorithm and the Computation of Polynomial
Greatest Common Divisors", JACX, Vol. 18, No. 4, October, 1971.

5. Claybrook, B. G. "POLYFACT: A Learning Program that Factors Multivariable
Polynomials", Dissertation, Computer Science/Operations Research Center,
Southern Methodist University, 1972, 194 pp.

6. Claybrook, B. G. and Nance, R. E. "The Dynamic Creation and Modification
of Heuristics in a Learning Program", In Preparation.

7. Collins, G. E. "PM, A System for Polynomial Manipulation", CACM, Vol. 9,
August, 1966, pp. 578-589.

8. Collins, G. E. "The SAC-1 System: An Introduction and Survey", Proceedings
of the Second Symposium on Symbolic and Algebraic Manipulation, 1971,
pp. 144-152.

9, Hearn, Anthony C. "REDUCE 2: A System and Language for Algebraic Manipula-
tion", Proceedings of the Second Symposl:m on Algebraic and Symbolic
Manipulation, 1971, pp. 128-133.

10. Hunt, Earl B., Marin, Janet, and Stone, Philip J. Experiments in Induction,
Academic Press, New York, 1966, 247 pp.

11. Johnson, S. C. "A Factoring Algorithm for Polynomials Over an Arbitrary
Galois Extension of the Rationale", Bell Laboratories Report, 1966, 38 pp.

12. Jordan, D. E., Kain, R. Y., and Clapp, L. C. "Symbolic Factoring of
Polynomials in Several Variables", CACM, Vol. 9, August, 1966, pp. 555-569.

13. Knuth, D. E. hTIALL2ICamputerlmammica, Vol. 2, Seminumerical
Algorithms, Addison-Wesley, Reading, Massachusetts, 1969.

14. Manove, M., Bloom, S., and Engleman, C. "Rational Functions in MATHLAB",
Symbol Manipulation Languages and Techniques, Daniel Bobrow (ed.),
North-Holland, Amsterdam, 1968, pp. 86-102.

Martin, W. A. and Fateman, Richard J. "The MACSYMA System", Proceedings
of the Second Symposium on Symbolic and Algebraic Manipulation,
1971, pp. 59-75.



55

lertot mum
16. Mendelson, Elliott. Introduction to Mathematical Logic, Van Nostrand

Reinhold, New York, 1964, 300 pp.

17. Michie, Donald and Ross, Robert. "Experiements with the Adaptive Graph
Traverser", Machine Intelligence 5, Meltzer, Bernard and Michie,
Donald (cAls.), American Elsevier, 1970, pp. 301-320.

18. Minsky, M. L. "Steps Toward Artificial Intelligence", Proceedings of the
IRE 49, 1961, pp. 8-30.

19. Musser, David R. "Algorithms for Polynomial Factorization", Ph.D. Thesis,
Computer Sciences Department, University of Wisconsin, 1971, 174 pp.

20. Newell, Allen, Shaw, J. C. and Simon, H. A. "A Variety of Intelligent
Learning in a General Problem Solver", Self- Or &anizing Systems, Yovits,
Marshall and Cameron, Scott (eds.), Pergamon Press, 1960, pp. 153-189.

21. Samuel, A. L. "Some Studies in Machine Learning Using the Game of Checkers",
In Computers and Thought, Feigenbaum, E. and Feldman, J. (eds.),
McGraw-Hill, 1963, pp. 71-105.

22. Slagle, J. R. and Farrell, C. D. "Experiments in Automatic Learning for a
Multipurpose Heuristic Program", CACM, Vol. 14, February, 1971, pp. 91-99.

23. Van der Waerden, B. L. Modern Algebra) Vol. 1, Frederick Ungar Publishing
Company, New York, 1953.

24. Wang, ". 1 S. and Rothschild, L. Preiss. "Factoring Multivariate Polynomials
Over the Integers", SIGSAM Bulletin, No. 28, December 1973, pp. 21-29.

25. Waterman, D. A. "Generalization Learning Techniques for Automating the
Learning of Heuristics", Artificial Intelligence 1, 1970, pp. 121-170.

26. Zassenhaus, H. "On Hensel Factorization I", journal of _Number Theory,
Vol. 1, 1969, pp. 291-311.

27. Zimmer, Horst G. "Computers and Computations in Algebraic Number Theory",
Proceedings of the Second Symposium on Symbolic and Algebraic
Manipulation, March, 1971, pp. 172-179.


